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microstructure parameters s 0" and A,'. The coefficients Lu, FUji, Mr], E,jk~ and AGb2T -I in 
(5.15) for the DF are expressed in terms of the macroscopic characteristics of the ensemble 
of dislocation structures and have a specific value and an explicit physical meaning, and can 
be determined from the solution of the equations of the model /8, 9/. 
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ON LIMIT SURFACE LOADS IN THE THEORY OF PLASTICITY m 

0.O. BARABANOV 

Within the framework of quasistatic plasticity theory, the specific 
features of surface tangential loading is demonstrated by simple 
examples: the possibility of a singular surface discontinuity, and the 
absence of convergence of limit load coefficients for an arbitrary 
unlimited diminution of the period of the plastic composite. The second 
singularity forces an acknowledgement that the hypothesis /1/ and its 
subsequent verification are false in the case of tangential surface 
loads. 

1. l~ltip1~J~e too%ions. S~RguI~aP slcP~e ~ .  We confine ourselves to the examin- 
ation of rigidly plastic bimaterials in the antiplane and plane cases. The inhomogeneity 
will be given by using the periodic f~mction T (y), defined in the periodicity cell Y ---- (0, i)x 
as follows 

{ x~, V ~ Yk 

"~(Y)= "r~, e ~ Y \ Y ~  

Yk ={Y:  1 2 y l - - t  I < k ,  ~ = t ,  2}, O < x x . < T  2, O < k < t  
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where k,r,,T 2 are fixed numbers. We call the sections r = T i of the plane inclusions. 
Let Q be a plane domain under loading. When Q is a coordinate rectangle, its sides will be 
denoted thus: L is left, R is right; U is up, and D is down. 

Let Q = (-~, ~) x (-~, ~). we put 

/ ( . ,  vu) = ~ (x) l v .  (x)I, F (u) = l / (x, Vu) dx 
Q 

Bu = l u d s - - l u d s  
L R 

(1 1) 

Here u is an arbitrary antiplane velocity field, E is the dissipation functional, B is 
the surface load, and d8 is the Lebesgue measure along the boundary @Q of the domain Q. 

The problem of the limit load is to find the limit coefficient @ = @ (/, B) of the load 
B by one of the following formulas (see /3/, say) 

0 = lnf {F (u)/Bu" u ~ H*, Bu > 0} (i.2) 

0 = max ~ (1.3) 

where /d' is a Sobolev space with norm (IQ l u 12 ~- l Vu [2 dx)%, the maximum is taken among all 

> 0 such that the load ~B is equilibrated by the allowable stress field o = (61 , 62)~ L ~ , 
i.e., 

I aVu = ~Bu, ~_ dx Vu ll* 
Q 

]O (x) ] -~  "~ (x) almost everywhere on Q. 

We assume ~ to be such that there is a point x 0 belonging simultaneously to the 
interior of L and the interior of the inclusion. Let As C Q be an isosceles triangle with 
middle of the base at the point x 0 whose altitude has the dimension 8 a and base the dimen- 
sion 28. We define a continuous piecewise-affine function u8 on Q as follows: u8 (x0)= 6-*, 
u6 ~-0 on Q\ A8 and on each of the halves of the triangle A 6 separated by the altitude 
the function u6 is continued affinely. It can be verified that Bu6 = t ,  F (u6)--+. % for 
6 ~ 0. Then according to (1.2) 

0 ~ h m  F (u6)/Bu6 = ~, 

On the other hand, the load TIB is equilibrated by the allowable stress field (--TI.0) 
Then according to the dual formula (1.3) T i < @ and therefore @ = T i 

The sequence l~ is therefore minimizing for problem (1.2). Its generalized limits 
should be interpreted as the measure on uQ that is singular relative to the measure ds. 
Simultaneously, a generalized limit of the sequence Vu0 exits that is to be understood as 
the vector-valued measure on the closure of Q. A detailed examination of the questions 
arising here is beyond the scope of this paper (see also /4, 5/, where the generalized velocity 
fields are submerged in L* (Q)x L* (OQ) and LI(Q).< (L ~ (OQ))' which is quite close to the 
expressed consideration). 

2. The avez~ng p~-obSe~, we examine a sequence of bimaterials with Lagrangian (/~ (~, 
Vu) = / (s-ix, Vu). The averaging problem is to confirm the follcwing assertion: a homogeneous 
material with Lagrangian /0 (Vu) exists such that the convergence 0 (/e, A)-~ 8 (]0, A) holds 
as ~ I 0 in a fairly broad set of combinations of the clamping conditions and loads A. 

The operation /~ /l,ora of formal averaging is well-known /6/ 

/hom(~) = *nf I / (y '  ~ + ~'u (y)) dy, ~ ~ ~2 
Y 

where mf 
meaning. The convergence 

0 (I~, A)--)-O (]hom, A), e ~ 0 

holds /3/ for an arbitrary surface-clamped bounded Lipschitz domain sub]ected to the bulk 
loading 

A u = I a u d x  ( a ~ L  ~(Q)) 
Q 

is taken over all ]{-periodic functions u for which the interval on the right has 

(2.1) 
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Confirmation of the convergence (2.1) in the case of surface laods is called /3/ "one of 
the interesting problems of averaging theory". It turns out that (2.1) is violated for 
surface loads. 

~. ~o~-a~el~2geGb~$~%y ~deP S~l-f~e Loads. We say that ~ belongs to the set M~C~ 2 
if a Y-periodic stress field u~L = (~) exists such that almost everywhere 

Remumk. Any piecewise-smooth solenoidal field o with piecewise-smooth surfaces of 
discontinuity along whose~dges a weakened continuity condition is satisfied for 0: s+v++~-v- = 
0 (v is the notation of the external normal) satisfies the last condition. 

There is the dual formula /3/ 

/h')m (~)=  SUp ~'q 

Let t = k~, d- (| -- kT2). We compare the stress field o~ (Yl, Y2) = (~i h (Y2), ~,h (y,)) to each 
~] ~ ~z ] ~ I -~ t where h is a function of period unity having the form 

h ( r ) =  { '~ / t ,  1 2 r - - t l ~ < k  
z2/t, k < [ 2 r - -  t l -< . t  

on (0, i). 

It can be confirmed (see the Remark) that for on the conditions listed above are 
satisfied. Then {q: I ~ I ~ t} C Mr and consequently t [ ~ [~/hem (~). 

Let Q = (--i, i)× (--6, ~), the load B is given by (i.i). For e (n) = 2 (2n ~- |)-t in- 
clusions emerge on L, R and according to Sect.1 a singular surface discontinuity is realized. 
In particular, 8 (]~, B) : TI, Ve (n). On the other hand, according to the estimate obtained 
for ]h,,m 

k~, + (1 -- k ) ~ <  O (I h°~", B) 

Hence, for ~, < T2 
lim 0 (It, B) .<~ 0 (f,om, B), 

which indicates the lack of formal averaging in the case under consideration. The fact that 
the limit of 0 (]~, B) does not exist for s tending arbitrarily to zero hence still does not 
certainly follow. Let us examine the situation in greater detail. 

4. ReL2tive deviut~ of incZusions from the boundary as an averuging purumeter. Let 
Q = (--I, I) x (--6, ~), where 8 is an irrational number and 0 < p = const. In this case a 
sequence e ~ e (n) ~ 0 exists such that the deviation of the inclusion in Q from L, R equals 

@ke/2 and is not less than (I- k)e/2 from U, D. As before, let the load B be given by 
(i.i). For brevity, we introduce the notation 8~ = 8 (/e, B). We obtain the estimates 

0:- (p) < 0= < 0~ + (p) (4 t)  

from which it will follow that the limit of 0 (in the announced sequence e (n)) depends on 
p. 

For symmetry reasons we will examine just the side L with its nearest neighbourhood in 
Q. We determine e from the announced sequence. 

Let T be a rectangular strip between L and the inclusion (Fig.l), and T6 an analogous 
strip with dimensions 6-greater (see Fig.l). We define a continuous piecewise-affine func- 
tion u6 in Q as follows: u~ ~ I on T, u~ ~ 0 on Q ~  T8 and the function u6 is continued piecewise- 
affinely on T8 ~ Y. It can be confirmed that the convergences 

I / , (x ,  Vu~)dx-> (~:1 + p%,)ke, Bu6--'..he 
q 

h o l d  f o r S ~ 0 .  

T h e r e f o r e  0~ ~. ~1 + PT2 ~ 0~ ,+ (P) 
To o b t a i n  t h e  l e f t  e s t i m a t e  o f  (4.1} we s t a r t  from t h e  a u x i l i a r y  s t r e s s  f i e l d  i n  t h e  

t r a p e z o i d  ABCD in  F i g . 2  t h a t  i s  s y m m e t r i c a l  about  t h e  YL a x i s .  In  e f f e c t  we s e t  o~ = --cy~ -~, 
~2 = --cy.2Y, -2. For such a stress field dlv o = 0, ov = 0 on BC and AD. If ~ > 0 is given, 
then for an appropriate c we will have ox, = ~ on AB and ov = --(I AB ] / I CD [ ) ~ on CD. 
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Here within the limits of the trapezoid 

m a x  l o ] =- ~ (1 + (I CD ] - -  I A B  I)~/(2h)z) ','~ 

where h is the height of the trapezold. 
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we now construct a piecewise-continuous solenoidal field o~ (in the sense of dis- 
tributions) in the horizontal rectangular strip ~CQ of width 8 (Fig.3). Namely, we 
construct a stress field in the trapezoids Tt, T~ (Fig.3) by the above-mentioned method such 
that the equality o=~ = A is satisfied on L (we consider the two halves of T I as one 
trapezoid; u is the ratio of the bases of Y2, ~I). Then on the bases on the trapezoids 
Yl and 2'2 interior relative to Q we obtain respectively 

0 = ~  = - - ( i  - -  a k ) / ( l  - -  k ) ,  a ~ v  = - - a ~  

We, respectively, set 

o=~ = ( - - ( t  - -  ~k) ~I(t  - -  k),  0), o=~ = ( - - ~ ,  O) (4.3) 

in the strips ~z, ~2 resting on T,, T 2. 
Retaining the notation, we continue the field o=~ periodically from ~ into the 

subdomain of Q of the form R ~- 8me2, where e 2 is the basis vector of the direction x 2 and 
m is an integer. We set u=~ = (--A, 0) on the remaining horizontal strips abutting on U, D 
(not intersecting the inclusions in conformity with the selection of the sequence 8 (n)). 
It is seen that the field o~ constructed equilibrates the load XB in Q. Then it follows 
from (1.3), (4.2), and (4.3) that 

Oa- (p) = m a x  m i n  , i + 
u > o  

can be taken as 05-(p). 
The functions ~-(p), ~÷(p) are continuous, strictly increasing functions of p (p~0) 

For p $ 0 they have a common limit xl- Hence follows the derivation of the dependence of 

the limit ~ on the parameter p that characterizes the relative location of the domain and 
inclusion boundaries. 

5. P~a~te mo%~oMs. The following example is analogous to the preceding one in meaning. 
Let Q = (--I, I) 2 we set 
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1 (~, ~ (.))  = V~" ,  (,~)1 ~ (" ) (x) I ,  F (u) = I 1 (x, ~ (.))  dx 
Q 

U L D R 

t (Ou,/Oxj + Ou /Ox,), I e (u)[a = en  2 -4- 2e12 ~ + el, 2 (e (u) (x)),, = 7 

(5.t) 

Here u = (ul, u2) is the velocity field, and e(u) is the strain rate tensor. The 
surface load (5.1) is tangential and, obviously, selfequilibrated. 

The limit coefficient 0=0 (/, B) is found from one of the following formulas* in /7/ 
(these same formulas, with respect to the general case, are the original in /2/ also): 

O = i n f { F ( u ) : u ~ H * ,  d i v u = O ,  B u = l } ,  O = m a x k  

where the maximum is taken among all values ~ > 0  such that the load ~B is equilibrated 
by the allowable stress field ~ = (a,j) = (ojl)~LS(Q), i.e., 

I ~' (~,,e(u),jdx=XBu, Y u ~ H  a 

(O11--Oss)s~-4~1s~4T s almost everywhere on Q. 
As before, we set ~ (x, ~) =/(8-1x, ~), ~ = 0 (~, B). 
Non-averageability can also be shown in this case. Namely, the strict inequality 

lira O,, < lira O~ (5.2) 

can be obtained for two different sequences ~' ~ 0 and 8" ~ 0. 

We first consider the auxiliary problem of a limit load in the domain Q = Y\Yk. Let 
the interior surface of the domain Q be free and the exterior subjected to the tangential 
loading (5.1). We denote the appropriate limit coefficient by ~,(0 < ~,) and o 0 is the 
allowable stress field equilibrating the load %B. We continue the field ~0 to zero on Y~ 
and then Y-periodically to the whole plane. We denote the field obtained by o.. 

Let Q = (--I,I)',0<xi < ~,, and the load B is given by (5.1). We examine the sequence ~,, 
where ~'= 2(2n + I)-*. In this case the inclusions emerge on the boundary of Q and a singular 
surface discontinuity is realized. 

Indeed, we take a discontinuous velocity field localized on an inclusion emerging from 
the boundary and consisting of three rigid parts slipping relative to each other (Fig.4). 
According to a known method reinforced by the proof /4, 5/ 

0~, < n ~ I [u] I l i B .  
l 

where [u] is the velocity jump on the interfacial boundary of the rigid parts and ~ is the 
length of the appropriate (~-th) piece of the interracial boundary. Elementary calculations 
result in the estimate 0,. < % (I + 6'). Passing to the limit as 610 (for a fixed ~'), we obtain 
that 0,. < ~i. The allowable stress field a,, = 0, o12 = %, ols = 0 equilibrating the load ~,B 
results in the estimate ~i < ~,. Therefore, ~, = ~,, re'. 

Now we examine the sequence &.,~" = n-~ It is seen that the stress field o,.(x) = o. ~/~) 
is equilibrating to the load ~.S and allowable. Therefore, % < 8~,V~'. 

As a result, by choosing T, < T, we obtain (5.2). 

Formally speaking, the example constructed is not a counterexample to theorems of /2/ 
that affirmatively solve (without proof) the averaging problem in the whole load spectrum, 
but for domains with smooth boundaries. However, it is obvious that the situation is not in 
the presence of angles for the domains. Thus, a smooth expansion of the domain (above D and 
under U) in the antiplane examples of Sects.3, 4 conserves the fact of non-averageability. 
The effect that is called the singular surface breakaway above explains the non-averageability 
of plastic media extremely simply. Let the domain geometry be sufficiently "good". When 
softer inclusions emerge on the tangentially loaded boundary the limit load is a function of 
the inclusions flow exclusively. In other cases of the relative location of the inclusions 
and boundary, the limit load depends essentially on the flow characteristics of the harder 
matrix of the composite also. The examples presented confirm and refine this reasoning. 

(*Barabanov, 0.0., On equivalent formulations of the limit elastic-plastic problem. Deposited 
in VINITI January 31, 1986. No.729-V86 Dep., Vladimir, 1986. 
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A CRACK ON THE INTERFACIAL BOUNDARY OF PRESTRESSED ELASTIC MEDIA* 

V.B. ZELENTSOV and L.M. FILIPPOVA 

The plane problem of the equilibrium of a piecewise-homogeneous body 
weakened by a crack located on the interfacial boundary of the materials 
and under uniform loading is considered. There are initial stresses in 
the body that act in the direction of the interfacial boundary. The 
solution of the problem is found by reduction to a system of singular 
integral equations. It is established that exactly as in an analogous 
problem without taking account of the initial stresses /1-3/, the 
solution near the crack tip is rapidly oscillating in nature, where the 
oscillation zone is broadened as the initial compression increases. 

I. We consider a piecewise-homogeneous elastic body consisting of two half-planes inter- 
connected along the whole interfacial boundary y = 0 with the exception of the segment 
J x ] ~ ~ which is a rectilinear crack in the form of an infinitely thin slit. Here x, U 
are dimensionless coordinates referred to the crack length a. The body is subjected to a 
preliminary homogeneous finite strain for which there are no stresses on lines parallel to 
the z axis. The crack edges are loaded by uniform pressure p and a uniform shearing load of 
intensity T. The strain caused by the loading of the crack edges is assumed to be small, 
and consequently, we use linearized equilibrium equations for a prestressed medium to solve 
the problem /4/. 

For non-linearly elastic materials of general form the solution of the problem gives rise 
to serious technical difficulties. Consequently, we will investigate specific models of 
materials. It is assumed in this section that the materials filling the lower and upper half- 
planes are incompressible and described by the Mooney model /4, 5/ with shear modulus G i in 
the lower y < 0 half-plane and shear modulus G 2 in the upper y < 0 half-plane. 

The mathematical formulation of the problem constains boundary conditions on the line 
y=0 

u~ = u2, vl = v2, Ovv 1 = 0 ~ ,  0 ~ 2 = 0 ~ 1 ,  1 <  I x 1 <  
Ot,~l = 0 ~  = - - p ,  Owl = O w ,  = ' c ,  Ix  1 ~ 1  (1.t) 

*PPik~.Matem.Mek~.,53,5,83o-836,1989 


